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Recall Last Lecture: Sorting

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO

> A sorting algorithm is in-place of the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

> |nsertion sort is incremental: having sorted the subarray A[1...j — 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1...j].

> Merge sort is divide-and-conquer: break the problem into smaller

subproblems and then combine the solutions to the subproblems
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Use a recurrence equation to describe the running time:

> Let T(n) = “running time on a problem of size n"
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> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)
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Recall: Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

> We get the recurrence

{@(1) if n<c,

T(n) = aT(n/b)+ D(n) + C(n) otherwise.
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Recall: Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Lecture 4, 26.02.2025



Recall: Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)
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Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Lecture 4, 26.02.2025



Recall: Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time
= C(n) = O(n).
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Recall: Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = O(1) if n= .1,
2T(n/2) 4+ ©(n) otherwise.
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Recall: Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is (if we wish to be strict)
T(n) = o(1) if n= %,
T([n/2])+ T([n/2]) 4+ ©(n) otherwise.
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It's easer to fool
people than to
convince them
that they have
been fooled.

-Mark Twain
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I IMMEDIATELY
REGRET THIS
DECISION.

GREED'#
IN
GooD’

YOU: How come | just lost 20% of my
fortune on the investments you
recommended?

BANKER: It has been a bad year for
everybody.
YOU: Oh ok.



YOU: How come | just lost 20% of my
fortune on the investments you
recommended?

YOU: Show me the money!

BANKER: It has been a bad year for
everybody.



YOU: How come | just lost 20% of my
fortune on the investments you
recommended?

BANKER: It has been a bad year for

everybody.

MAXIMUM SUBARRAY
YOU: Show me the money! PROBLEM

... but first we finish the analysis of recurrences
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Analysing Recurrences

As an example, we shall consider the following recurrence

ifn=1,

T(n) = T(ln/2])+ T([n/2]) + c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.
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Analysing Recurrences

As an example, we shall consider the following recurrence

c ifn=1,

T(n) = T(ln/2])+ T([n/2]) + c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.

Indeed, there exists constants c¢1, ¢ > 0 such that

c ifn=1, o(1) ifn=1, [ ifn=1,
2T(n/2) 4+ c1 - n otherwise. — | 2T(n/2)+ ©(n) otherwise. — |2T(n/2)+ can otherwise.

Hence, LHS = Q(nlog n) and RHS = O(nlog n) implies that the recurrence for
MERGE-SORT is ©(nlog n)
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Analysing Recurrences

As an example, we shall consider the following recurrence

ifn=1,

T(n) = T(ln/2])+ T([n/2]) + c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.

We shall solve recurrences by using three techniques:
> The substitution method
> Recursion trees

» Master method
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Hmm it seems like
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The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n
=2(2T(n/4)+c-n/2)+c-n=4T(n/4)+2-cn
=4(2T(n/8)+c-n/4)+2-cn=8T(n/8)+3-cn

Hmm it seems like
=2KT(n/2%) + k- cn
A qualified guess is that T(n) = ©(nlog n)
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Proof of guess
Upper bound
There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2),..., T(k)
are bounded by a constant value depending on k, selecting a sufficiently
larger than this value will satisfy the base cases.
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Upper bound
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.

T(n)=T(|n/2])+ T([n/2]) + cn
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.
T(n)=T(|n/2])+ T([n/2]) + cn

<2'a(n+1)

< 5 log((n+1)/2) + cn
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.

T(n)=T(|n/2])+ T([n/2]) + cn

@ log((n + 1)/2) + cn

< a(n+1)log(3n/4) + cn

<2
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.

T(n)=T(|n/2])+ T([n/2]) + cn

@ log((n + 1)/2) + cn

< a(n+1)log(3n/4) + cn
=a(n+ 1) (logn—log(4/3)) + cn

<2
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.
T(n)=T(|n/2])+ T([n/2]) + cn

@ log((n + 1)/2) + cn

< a(n+1)log(3n/4) + cn
=a(n+1)(logn—log(4/3)) + cn
=a-nlogn+ (alogn—a(n+1)log(4/3)) + cn

<2
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Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.
T(n)=T(|n/2])+ T([n/2]) + cn

@ log((n + 1)/2) + cn

< a(n+1)log(3n/4) +cn
=a(n+1)(logn—log(4/3)) + cn
=a-nlogn+ (alogn— a(n+1)log(4/3))+ cn
<a-nlogn (if we select a > 2¢/ log(4/3))

<2

We can thus select a to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = O(nlog n)
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Proof of guess

Lower bound

There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n
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Proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Base case: For any fixed constant k, T(1), T(2),..., T(k) is bounded
by below by some constant (depending on k). Selecting b sufficiently
smaller than this constant satisfies the base cases.
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Proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n
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Proof of guess

Lower bound

There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1,...,k — 1} where k is a sufficiently large constant

and prove the statement for n = k.
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Proof of guess

Lower bound

There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1, .. ., k — 1} where k is a sufficiently large constant

and prove the statement for n = k.

T(n)=T(|n/2])+ T([n/2])+cn
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Proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1

and prove the statement for n = k.

..... k — 1} where k is a sufficiently large constant

T(n)=T(|n/2])+ T([n/2])+cn

22-@|og((n—l)/2)+c-n
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Proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1

and prove the statement for n = k.

,,,,, k — 1} where k is a sufficiently large constant

T(n)=T(|n/2])+ T([n/2])+cn

@ log((n —1)/2) + ¢+ n

> b(n—1)-log(n/3)+c-n

>2:

Lecture 4, 26.02.2025



Proof of guess
Lower bound
There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1

and prove the statement for n = k.

,,,,, k — 1} where k is a sufficiently large constant

T(n)=T(|n/2])+ T([n/2])+cn

@Iog((n—l)/2)+c'n
> b(n—1)-log(n/3)+c-n

=b-nlogn—>b-logn—b(n—1)log3+c-n

>2:
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Proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b-nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1, .. ., k — 1} where k is a sufficiently large constant

and prove the statement for n = k.
T(n)=T(|n/2])+ T([n/2])+cn

@Iog((n—l)/2)+c'n
> b(n—1)-log(n/3)+c-n
=b-nlogn—>b-logn—b(n—1)log3+c-n

>b-nlogn (if we select b < ¢/(2 - log3))

>2:

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T(n) = Q(nlog n)
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Floors and ceilings are a mess

» Floors and ceilings in a recurrence relation introduce a lot
of low order terms.

» This makes calculations messy but it does not change the
final asymptotic result.

» When analyzing recurrences we will simply assume for
simplicity that all divisions evaluate to an integer.
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Floors and ceilings in a recurrence relation introduce a lot
of low order terms.

This makes calculations messy but it does not change the
final asymptotic result.

When analyzing recurrences we will simply assume for
simplicity that all divisions evaluate to an integer.

Do you see another reason why we may disregard floors
and ceilings in the analysis of merge sort?



Floors and ceilings in a recurrence relation introduce a lot
of low order terms.

This makes calculations messy but it does not change the
final asymptotic result.

When analyzing recurrences we will simply assume for
simplicity that all divisions evaluate to an integer.

Do you see another reason why we may disregard floors
and ceilings in the analysis of merge sort? Analyze the
running time for the next power of two. This increases the
instances at most twice and all divisions will be an integer.



Common mistake using the substitution method

Be careful when using asymptotic notation!
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Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n= 0(n) wrong!
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Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n= 0(n) wrong!

Because we haven't proven the exact form of our inductive hypothesis
(which is that T(n) < cn), this proof is false
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound
There exists constants b, b’ > 0 such that T(n) < b-n—b'forall n>1

Proof by induction on n
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n—b'forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2), ..., T (k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n— b’ forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2), ..., T(k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.

Inductive Step: Assume statement true Vn € {2,3, ...,k — 1} and prove the statement for n = k.
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n— b’ forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2), ..., T (k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.

Inductive Step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.

T(n)=T(n/4)+ T(3n/4) + ¢
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n— b’ forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2), ..., T (k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.
Inductive Step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=T(n/4)+ T(3n/4) + ¢

_bn 30

_/ = b-Nn— /
S 2 b+c=b-n—-2b" +c¢
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n— b’ forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2), ..., T (k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.
Inductive Step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=T(n/4)+ T(3n/4) + ¢
bn 3bn
<= _p 42

4 4
<b-n—b (if we select b’ > ¢)

—b +c=b-n—-2b+c
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Sometimes solution is to prove something stronger
Let T(n)=T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n— b’ forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2),..., T (k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.
Inductive Step: Assume statement true Vn € {2,3, ..., k — 1} and prove the statement for n = k.
T(n)=T(n/4)+ T(3n/4) + ¢
bn 3bn
<2yt

4 4
<b-n—b (if we select b’ > ¢)

—b +c=b-n—-2b+c

We can thus select b and b’ to be positive constants so that both the
base cases and the inductive step holds. Hence, T(n) = O(n)
Lecture 4, 26.02.2025



Recursion trees

Another way to generate a guess. Then verify by substitution method.

> Each node corresponds to the cost of a subproblem

> We sum the costs within each level of the tree to obtain a set of
per-level costs,

> then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 4, 26.02.2025



Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

cn/?2 cn/2
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn
cn/?2 cn/2

VAN VAN
cn/4 cn/4 cn/4 cn/4
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

cn

cn/?2 cn/2
VAN VRN

cn/4 cn/4 cn/4 cn/4
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
| | | | | | | | | | | | | | | |
T(1) T(1) T(1) TQ) T(Q) T(1) T(1) TQ) T(Q) T(1) T(1) TA) TQ) T(1) T(1) T(1)
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

2~ cn

cn/?2 cn/2
VAN VAN
cn/4 cn/4 cn/4 cn/4

o) /N /N /NN

[ T T T T T A e e |

[ T T T T T L A T e |

[ T T T T T L O T e |

[ T T T T e |

(N e T R e e e |

(R N T T e e |

[ T T e e e

[ N e e e

[ N e e e
v T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1)
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

2~ cn

cn/?2 cn/2
VAN VAN
cn/4 cn/4 cn/4 cn/4

o) /N /N /NN

[ T T T T T A e e |

[ T T T T T L A T e |

[ T T T T T L O T e |

[ T T T T e |

(N e T R e e e |

(R N T T e e |

[ T T e e e

[ N e e e

[ N e e e
v T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1)

ology(n) — p
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

N cn cn
cn/2 cn/2 cn

VRN 7N
cn/4 cn/4 cn/4 cn/4 cn

o) /N /N /NN

I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I
v T() T() T() T() T(1) T() T() T() T() T(1) TW) T(1) T() T(1) T() T(1) cn
ology(n) —
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Recursion trees

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn

N cn cn
cn/2 cn/2 cn

VRN 7N
cn/4 cn/4 cn/4 cn/4 cn

o) /N /N /NN

[ R e e
T(1) T(1) T(Q) T() T(1) T(Q) T(Q) TQ) T(1) T(1) T(1) TQ) T() T(1) T(1) T(1) cn

ology(n) — p

Qualified guess: T(n) = cnlog, n = ©(nlog n)
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/Cn\

cn/3 c2n/3
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/////’ \\\\\
cn/3 c2n/3

VRN VRN
cn/9 c2n/9 c2n/9 c4n/9
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

- cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

T

leftmost branch peters
out after logs n levels

- cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VAN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

» Each level contributes ~ cn
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

> Each level contributes =~ cn
Qualified guess: exist positive constants a, b so that
a-nlogg(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

> If f(n) = O(n'°% =€) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% =€) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'98b2), then T(n) = ©(n'°8s? log n)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% =€) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'98b2), then T(n) = ©(n'°8s? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% =€) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'°8>2), then T(n) = ©(n'°¢b? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
> f(n)=0(n) and a= b =2 so log,(a) = 1 and f(n) = ©(n'e:(2)).
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Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant e > 0, then T(n) = ©(n°8»2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8>2*€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) =©(n) and a = b =2 so log,(a) = 1 and f(n) = O(n'°e:(2)).
By Master theorem, we have T(n) = ©(nlogn) :) y
A
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> You have the prices that a stock traded at over a period of n
consecutive days

Lecture 4, 26.02.2025



120
110
100
90
80
70
60

/
N/ \ / \
N/ N
\ /
\4
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16

> You have the prices that a stock traded at over a period of n
consecutive days

> When should you have bought the stock? When should you have
sold the stock?
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Scenario

120

110

w NN / \

90 \V/

" N/ \

60 T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Change 13 -3 =25 20 -3 =16 =23 18 20 =7 12 -5 =22 15 -4 7

> You have the prices that a stock traded at over a period of n
consecutive days

> When should you have bought the stock? When should you have

sold the stock?
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Scenario

120

110 /

o N/ \ / \

90 \V/

" N/ \

60 T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Change 13 -3 =25 20 -3 =16 =23 18 20 =7 12 -5 =22 15 -4 7

> You have the prices that a stock traded at over a period of n
consecutive days

> When should you have bought the stock? When should you have

sold the stock?

> Even though it's in retrospect, you can yell at your stockbroker for

not recommending these buy and sell dates
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Optimal Solution Structure

Why not just “buy low,sell high"?
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Optimal Solution Structure

Why not just “buy low,sell high"?

> Lowest price might occur after the highest price
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Optimal Solution Structure

Why not just “buy low,sell high"?

> Lowest price might occur after the highest price

> But wouldn’t the optimal strategy involve buying at the lowest price
or selling at the highest price?
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Optimal Solution Structure

Why not just “buy low,sell high"?

> Lowest price might occur after the highest price

> But wouldn’t the optimal strategy involve buying at the lowest price
or selling at the highest price?

> Not necessarily:

11

10 /\\
9
Day | 0 2 3 4
8 \\// \\ Price 10 11 7 10 6
7 \ Change 1 —4 3 —4
6 T T T T T
0 1 2 3 4
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Optimal Solution Structure

Why not just “buy low,sell high"?

> Lowest price might occur after the highest price

> But wouldn’t the optimal strategy involve buying at the lowest price
or selling at the highest price?

> Not necessarily:

11

10 /\\
9
Day | 0 2 3 4
8 \\// \\ Price |10 11 7 10 6
7 \ Change 1 -4 3 —4
6 T T T T T
0 1 2 3 4

It requires us to solve the MAXIMUM-SUBARRAY PROBLEM
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | _4 |
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition

INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

[2f-4ls]afs|7]7]-2]4]3]2]
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition

INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

[2f-als]afs|7]7]-2[4]3]2]

output is i = 3 and j = 6 and the sum 14
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Maximum-subarray problem

More examples

60 - T T T T T T T T T T T T T T T T

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day | 0O 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
Price  |100 113 110 85 105 102 8 63 81 101 94 106 101 79 94 90 97
Change 13 -3 =25 20 -3 —16 =23 18 20 =7 12 =5 =22 15 —4 7
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Maximum-subarray problem

More examples

T T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day | 0O 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
Price 100 113 110 85 105 102 8 63 81 101 94 106 101 79 94 90 97

Change 13 -3 =25 20 -3 —16 =23 18 20 -7 12 =5 =22 15 —4 7
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Maximum-subarray problem

More examples
120

60l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
Change 13 -3 =25 20 -3 —-16 =23 /18 20 -7 12 -5 =22 15 -4 7
0l N\
" ANEA
9

Day |0 1 2 3 4

8 \\// \\ Price | 10 1 7 10 6
7 \ Change 1 -4 3 —4
6 T T T T T

0 1 2 3 4
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Maximum-subarray problem

More examples
120

60l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
Change 13 -3 =25 20 -3 —-16 =23 /18 20 -7 12 -5 =22 15 -4 7
0l N\
" ANEA
9

Day |0 1 2 3 4

8 \\// \\ Price | 10 1 7 10 6
7 \ Change 1 —4 —4
6 T T T T T

0 1 2 3 4
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FIRST ALGORITHM (brute force)
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Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = —o0 |

Lecture 4, 26.02.2025

Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = =2
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = =2
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = =2
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = =2
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 1
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 8
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 8
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 8

Lecture 4, 26.02.2025

Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 8
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 8
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 8
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 10
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Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)




Simply check all possible subarrays

(5) = ©(n?) many

Current best (B.val) = 10

Maximum-subarray-slow(A[1. .. n])
1 B.wal+ —oco0, B.i+1,Bj<n
2 fori+—1ton

3 tmp < 0

4 for j«<—iton

5 tmp < tmp + A[j]

6 if tmp > B.val

7 B.val < tmp

8 Bi+i

9 Bj+j

4 return (B.i,B.j, B.val)

andsoon ...
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What is the running time?
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Maximum-subarray-slow(A[1. .. n])
B.val <~ —c0, B.i+ 1, B.j<+n
fori<1ton
tmp < 0
for j«<—iton
tmp < tmp + A[j]
if tmp > B.val
B.val < tmp
B+
B.j<+j
return (B.i, B.j, B.val)

POO~NOOOODWNH




What is the running time? ©(n?)
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Maximum-subarray-slow(A[1. .. n])
B.val <~ —c0, B.i+ 1, B.j<n
fori<1ton
tmp < 0
for j«<—iton
tmp < tmp + A[j]
if tmp > B.val
B.val < tmp
Bi+i
B.j<+j
return (B.i, B.j, B.val)

POO~NOOOOPDWNH




What is the running time? ©(n?)

How much space do we use?
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Maximum-subarray-slow(A[1. .. n])
B.val <~ —c0, B.i+ 1, B.j<n
fori<1ton
tmp < 0
for j«<—iton
tmp < tmp + A[j]
if tmp > B.val
B.val < tmp
Bi+i
B.j<+j
return (B.i, B.j, B.val)

POO~NOOOOPDWNH




What is the running time? ©(n?)

How much space do we use? ©(n)
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Maximum-subarray-slow(A[1. .. n])
B.val <~ —c0, B.i+ 1, B.j<n
fori<1ton
tmp < 0
for j«<—iton
tmp < tmp + A[j]
if tmp > B.val
B.val < tmp
Bi+i
B.j<+j
return (B.i, B.j, B.val)

POO~NOOOOPDWNH




Divide-and-Conquer
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Divide-and-Conquer
-1 5 7 -7 -1]

k—Ab 7 71 -]
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Divide-and-Conquer
|-2 -1 5 7 -7 -1

-2 4 3 k—Aws 7 -7 -1

1 1
1 1
1 1
1 1
1 1
+ V¥

-2 4 3 -1| 5 7 -7 -1|
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Divide-and-Conquer

-2 4 3 -1 57 -7 -1|

2 4 3 -1 diide 5 7 -7 -1)
-2 4 3 -1| . 5 7 -7 -1|
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Divide-and-Conquer

-2 4 3 -1 57 -7 -1|

2 4 3 -1 diide 5 7 -7 -1)
-2 4 3 -1| . 5 7 -7 -1|

E2E s |

i
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Also find the maximum subarray that crosses the midpoint!
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Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 5 7 -7 -]

2 4 3 -1 diide 5 7 -7 -1)
-2 -4 3 -1| . 5 7 -7 -1)

-2 4 3 15 7 -7 -1

N
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
A[mid 4+ 1... high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
A[mid 4+ 1... high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid +1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

FIND-MAXIMUM-SUBARRAY (A4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2|
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)
(right-low, right-high. right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high. right-sum)
else return (cross-low, cross-high. cross-sum)
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Analysis

Assume that we can find
max-crossing-subarray in time ©(n)
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FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

( I L'ol.‘ ) .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢




Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

( I h o h . .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢

Divide takes constant time,i.e., ©(1)
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Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2)

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low. right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)

elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)

else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size

n/2= T(n/2)
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FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e ( n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)



FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e ( n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY

= O(n)
Recursion for the running time is
o(1) ifn=1,

Tn) = 2T(n/2) 4 ©(n) otherwise



FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e ( n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY

= O(n)
Recursion for the running time is
o(1) ifn=1,

T(n) =

H . T(n) = O(nl
2T(n/2) +©(n) otherwise ence, T (n) (nlogn)



Finding maximum subarray crossing midpoint

> Any subarray crossing the midpoint A[mid] is made of two
subarrays A[i ... mid] and Almid + 1,. .., ] where low < i < mid
and mid < j < high

> Find maximum subarrays of the form A[i ... mid] and
Almid +1...j] and then combine them.

|2 4 3 -15 7 -7 -]

2 -4 3 -1|[5 7 -7 -1|

2 4 3 157 -7 -]
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i . . mid].

left-sum = —oo
. sum = 0
low mid for i = mid downto low

sum = sum + Ali]
if sum > left-sum

o 2 _4 5 left-sum = sum

max-left = i
L // Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j

Lecture 4, 26.02.2025
! // Return the indices and the sum of the two subarrays.



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i

low

sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum
max-lef

// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

high

mid
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
H H if sum > left-sum
Running time? lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

Crossing subarray

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if sum > left-sum
Running time? ©(n) lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if left-
Running time? ©(n) s s
max-left =i

// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high

Space? ©(n) sum = sum -+ ALj]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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> Divide-and-conquer simple but powerful algorithmic paradigm
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> Divide-and-conquer simple but powerful algorithmic paradigm
> Merge-sort and maximum subarray both run in time ©(nlog n)

> This is much faster than ©(n?) for large instances
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Divide-and-conquer simple but powerful algorithmic paradigm

> Merge-sort and maximum subarray both run in time ©(nlog n)

v

This is much faster than ©(n?) for large instances

v

Remember techniques for solving recurrences
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Divide-and-conquer simple but powerful algorithmic paradigm

v

> Merge-sort and maximum subarray both run in time ©(nlog n)

v

This is much faster than ©(n?) for large instances

v

Remember techniques for solving recurrences

v

Solving recurrences fun but delicate
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